21559 measured reflections 3670 independent reflections

 $R_{\rm int}=0.053$ 

3242 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 3,3,6,6-Tetramethyl-9-(2-nitrophenyl)-3,4,6,7-tetrahydro-2H-xanthene-1,8(5H,9H)-dione

#### Yingming Mo, Hong-Jun Zang\* and Bo-Wen Cheng

Department of Enviromental and Chemistry Engineering, Tianjin Polytechnic University, State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin 300160, People's Republic of China Correspondence e-mail: chemhong@126.com

Received 19 July 2010; accepted 22 July 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.063; wR factor = 0.144; data-to-parameter ratio = 13.7.

In the title compound,  $C_{23}H_{25}NO_5$ , the pyran ring adopts a flattened boat conformation, while the two cyclohexenone rings are in envelope conformations. The 3-nitrophenyl ring is almost perpendicular to the pyran ring, making a dihedral angle of 87.1 (3)°.

#### **Related literature**

For the use of xanthenes as dyes and fluorescent materials for visualization of biomolecules and in laser technologies, see: Menchen et al. (2003); Banerjee & Mukherjee (1981). They can be converted by oxidation into xanthylium salts, which are also effective as dyes and fluorescent materials, see: Nogradi (2003); Kamel & Shoeb (1964). For the biological and pharmaceutical properties of xanthenes, see: Hideo (1981); Lambert et al. (1997); Poupelin et al. (1978).



#### **Experimental**

#### Crystal data

| C23H25NO5          | $V = 4164.9 (14) \text{ Å}^3$                |
|--------------------|----------------------------------------------|
| $M_r = 395.44$     | Z = 8                                        |
| Orthorhombic, Pbca | Mo $K\alpha$ radiation                       |
| a = 12.199 (2) Å   | $\mu = 0.09 \text{ mm}^{-1}$                 |
| b = 10.510 (2)  Å  | T = 113  K                                   |
| c = 32.484 (7) Å   | $0.20 \times 0.16 \times 0.10 \ \mathrm{mm}$ |
|                    |                                              |

#### Data collection

| Rigaku Saturn CCD area-detector      |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (CrystalClear; Rigaku, 2002)         |
| $T_{\min} = 0.983, T_{\max} = 0.991$ |

#### Refinement

R w

S 36

| $[F^2 > 2\sigma(F^2)] = 0.063$ | 267 parameters                                            |
|--------------------------------|-----------------------------------------------------------|
| $R(F^2) = 0.144$               | H-atom parameters constrained                             |
| = 1.16                         | $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 570 reflections                | $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$  |

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Tianjin Natural Science Foundation (07JCYBJC02200) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2186).

#### References

Banerjee, A. & Mukherjee, A. K. (1981). Stain Technol. 56, 83-85.

- Hideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.
- Kamel, M. & Shoeb, H. (1964). Tetrahedron, 20, 491-495.
- Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.
- Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. U. S. (2003). US Patent 6 583 168.

Nogradi, M. (2003). Sci. Synth. 14, 201-273. Poupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida-

- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.
- Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o2129 [doi:10.1107/S1600536810029211]

### 3,3,6,6-Tetramethyl-9-(2-nitrophenyl)-3,4,6,7-tetrahydro-2H-xanthene-1,8(5H,9H)-dione

### Y. Mo, H.-J. Zang and B.-W. Cheng

#### Comment

Xanthenes are an important class of organic compounds that find use as dyes, fluorescent materials for visualization of biomolecules and in laser technologies, due to their useful spectroscopic properties (Menchen *et al.*, 2003; Banerjee & Mukherjee, 1981). Oxidation of these compounds can be converted to the corresponding xanthylium salts, which are also effective as dyes and fluorescent materials (Nogradi, 2003; Kamel & Shoeb, 1964). Xanthenes have also received considerable attention from many pharmaceuticals and organic chemists, actually because of the broad spectrum of their biological and pharmaceutical properties such as agricultural bactericide effects (Hideo, 1981), photodynamic therapy, anti-inflammatory activities (Poupelin *et al.*, 1978) and antiviral effects (Lambert *et al.*, 1997). In view of the importance of the title compound,(I), we report herein its crystal structure.

The pyran ring of the title molecule (Fig. 1) adopts a flattened boat conformation. The two cyclohexenone rings adope envelope conformation with atom C3 and C11 at the flap. The 3-nitrophenyl ring and the planar part of the pyran ring (C1/C6/C8/C13) are nearly perpendicular to each other, with a dihedral angle of 87.1 (3)°.

#### Experimental

A mixture of 2-nitrobenzaldehyde (212 mg, 2 mmol), dimedone (560 mg, 4 mmol), p-TSA (2 mg, 5 mol%), 4 ml of MeOH containing 2 ml of water was heated to 50 ° C in an atmosphere of argon for about 20 min. After completion of the reaction (as indicated by TLC), the reaction mixture was poured into crushed ice and stirred for about 1 h.The solid separated was filtered through a sintered funnel under suction, washed with ice-cold water (30 ml) and then recrystallized from hot ethanol to afford the product (0.213 g, 80%). A single-crystal was obtained by slow evaporation of a EtOH solution.

#### Refinement

The H atoms bonded to C atoms were included in the refinement in the riding model approximation, with C–H = 0.93-0.97Å and  $U_{iso}$  (H) =  $1.2 U_{eq}$  (C atom). For the H atoms attached to C atoms of methyl groups, their  $U_{iso}$ (H) = $1.5U_{eq}$ (C). Figures



Fig. 1. A view of the Structure of (I), Showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram of the title molecule.

### 3,3,6,6-Tetramethyl-9-(2-nitrophenyl)-3,4,6,7-tetrahydro-2*H*-xanthene-1, 8(5*H*,9*H*)-dione

Crystal data

| C <sub>23</sub> H <sub>25</sub> NO <sub>5</sub> | $D_{\rm x} = 1.261 {\rm ~Mg~m}^{-3}$                  |
|-------------------------------------------------|-------------------------------------------------------|
| $M_r = 395.44$                                  | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Orthorhombic, Pbca                              | Cell parameters from 9106 reflections                 |
| a = 12.199 (2) Å                                | $\theta = 1.9 - 28.1^{\circ}$                         |
| b = 10.510 (2)  Å                               | $\mu = 0.09 \text{ mm}^{-1}$                          |
| c = 32.484 (7) Å                                | T = 113  K                                            |
| $V = 4164.9 (14) \text{ Å}^3$                   | Prism, white                                          |
| Z = 8                                           | $0.20 \times 0.16 \times 0.10 \text{ mm}$             |
| F(000) = 1680                                   |                                                       |

#### Data collection

| 3670 independent reflections                                              |
|---------------------------------------------------------------------------|
| 3242 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.053$                                                     |
| $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ |
| $h = -14 \rightarrow 14$                                                  |
| $k = -10 \rightarrow 12$                                                  |
| <i>l</i> = −38→36                                                         |
|                                                                           |
|                                                                           |

| Refinement |
|------------|
| ./         |

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                                                  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                                              |
| $R[F^2 > 2\sigma(F^2)] = 0.063$                        | H-atom parameters constrained                                                                                                         |
| $wR(F^2) = 0.144$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 1.5964P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                   |
| <i>S</i> = 1.16                                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                   |
| 3670 reflections                                       | $\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$                                                                                 |
| 267 parameters                                         | $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$                                                                                |
| 0 restraints                                           | Extinction correction: <i>SHELXL</i> ,<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct | Entirection of Colored 0,0008 (0)                                                                                                     |

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0098 (8)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|-------------|---------------------------|
| 01  | 0.54601 (12) | 0.17933 (14) | 0.36579 (4) | 0.0237 (4)                |
| O2  | 0.25719 (14) | 0.45727 (16) | 0.40103 (5) | 0.0387 (5)                |
| O3  | 0.49229 (13) | 0.50696 (15) | 0.26800 (4) | 0.0306 (4)                |
| O4  | 0.77268 (15) | 0.56112 (18) | 0.42780 (6) | 0.0474 (5)                |
| O5  | 0.78206 (14) | 0.76618 (17) | 0.42061 (5) | 0.0400 (5)                |
| N1  | 0.73522 (16) | 0.66330 (19) | 0.41615 (5) | 0.0299 (5)                |
| C1  | 0.56412 (18) | 0.2415 (2)   | 0.32907 (6) | 0.0219 (5)                |
| C2  | 0.64378 (18) | 0.1708 (2)   | 0.30297 (6) | 0.0227 (5)                |
| H2A | 0.6054       | 0.0996       | 0.2892      | 0.027*                    |
| H2B | 0.7015       | 0.1340       | 0.3208      | 0.027*                    |
| C3  | 0.69762 (18) | 0.2553 (2)   | 0.27026 (6) | 0.0226 (5)                |
| C4  | 0.60627 (18) | 0.3304 (2)   | 0.24887 (6) | 0.0246 (5)                |
| H4A | 0.6398       | 0.3897       | 0.2288      | 0.029*                    |
| H4B | 0.5596       | 0.2702       | 0.2333      | 0.029*                    |
| C5  | 0.53483 (18) | 0.4053 (2)   | 0.27790 (6) | 0.0244 (5)                |
| C6  | 0.51360 (17) | 0.3502 (2)   | 0.31886 (6) | 0.0214 (5)                |

| C7   | 0.43583 (17) | 0.4193 (2) | 0.34753 (6) | 0.0230 (5) |
|------|--------------|------------|-------------|------------|
| H7   | 0.3668       | 0.4380     | 0.3321      | 0.028*     |
| C8   | 0.40825 (17) | 0.3317 (2) | 0.38289 (6) | 0.0238 (5) |
| C9   | 0.31381 (19) | 0.3637 (2) | 0.40908 (7) | 0.0296 (5) |
| C10  | 0.2868 (2)   | 0.2742 (2) | 0.44399 (7) | 0.0343 (6) |
| H10A | 0.2361       | 0.2078     | 0.4337      | 0.041*     |
| H10B | 0.2481       | 0.3224     | 0.4658      | 0.041*     |
| C11  | 0.3870 (2)   | 0.2095 (2) | 0.46289 (6) | 0.0298 (6) |
| C12  | 0.44987 (19) | 0.1422 (2) | 0.42801 (6) | 0.0261 (5) |
| H12A | 0.5227       | 0.1156     | 0.4383      | 0.031*     |
| H12B | 0.4094       | 0.0647     | 0.4198      | 0.031*     |
| C13  | 0.46462 (17) | 0.2256 (2) | 0.39124 (6) | 0.0227 (5) |
| C14  | 0.75809 (19) | 0.1729 (2) | 0.23874 (6) | 0.0278 (5) |
| H14A | 0.8182       | 0.1276     | 0.2524      | 0.042*     |
| H14B | 0.7878       | 0.2272     | 0.2169      | 0.042*     |
| H14C | 0.7070       | 0.1112     | 0.2268      | 0.042*     |
| C15  | 0.78024 (19) | 0.3455 (2) | 0.29057 (7) | 0.0295 (5) |
| H15A | 0.8387       | 0.2957     | 0.3035      | 0.044*     |
| H15B | 0.7429       | 0.3968     | 0.3115      | 0.044*     |
| H15C | 0.8119       | 0.4017     | 0.2696      | 0.044*     |
| C16  | 0.4605 (2)   | 0.3084 (2) | 0.48427 (7) | 0.0421 (7) |
| H16A | 0.4185       | 0.3519     | 0.5058      | 0.063*     |
| H16B | 0.4859       | 0.3708     | 0.4640      | 0.063*     |
| H16C | 0.5238       | 0.2656     | 0.4966      | 0.063*     |
| C17  | 0.3501 (2)   | 0.1099 (2) | 0.49439 (7) | 0.0395 (7) |
| H17A | 0.3046       | 0.0458     | 0.4807      | 0.059*     |
| H17B | 0.3075       | 0.1514     | 0.5161      | 0.059*     |
| H17C | 0.4146       | 0.0687     | 0.5065      | 0.059*     |
| C18  | 0.48347 (18) | 0.5456 (2) | 0.36303 (6) | 0.0237 (5) |
| C19  | 0.42695 (19) | 0.6595 (2) | 0.35885 (6) | 0.0281 (5) |
| H19  | 0.3565       | 0.6592     | 0.3464      | 0.034*     |
| C20  | 0.4708 (2)   | 0.7741 (2) | 0.37241 (7) | 0.0318 (6) |
| H20  | 0.4305       | 0.8507     | 0.3689      | 0.038*     |
| C21  | 0.57294 (19) | 0.7774 (2) | 0.39100 (6) | 0.0296 (5) |
| H21  | 0.6043       | 0.8551     | 0.4002      | 0.035*     |
| C22  | 0.62764 (18) | 0.6625 (2) | 0.39566 (6) | 0.0250 (5) |
| C23  | 0.58551 (18) | 0.5471 (2) | 0.38256 (6) | 0.0241 (5) |
| H23  | 0.6252       | 0.4704     | 0.3868      | 0.029*     |

## Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|----|-------------|-------------|-------------|--------------|-------------|-------------|
| O1 | 0.0265 (9)  | 0.0227 (9)  | 0.0221 (7)  | 0.0030 (7)   | 0.0026 (6)  | 0.0018 (6)  |
| O2 | 0.0319 (10) | 0.0312 (10) | 0.0529 (10) | 0.0085 (8)   | 0.0103 (8)  | 0.0031 (8)  |
| O3 | 0.0332 (10) | 0.0266 (10) | 0.0319 (8)  | 0.0075 (8)   | -0.0029 (7) | 0.0042 (7)  |
| O4 | 0.0405 (12) | 0.0360 (12) | 0.0655 (12) | -0.0072 (9)  | -0.0202 (9) | 0.0157 (9)  |
| O5 | 0.0310 (10) | 0.0320 (11) | 0.0572 (11) | -0.0071 (8)  | 0.0037 (8)  | -0.0187 (8) |
| N1 | 0.0283 (11) | 0.0318 (12) | 0.0297 (10) | -0.0046 (10) | 0.0018 (8)  | -0.0044 (8) |

| C1  | 0.0237 (12) | 0.0211 (12) | 0.0209 (10) | -0.0029 (10) | -0.0028 (8) | -0.0011 (8)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C2  | 0.0260 (12) | 0.0187 (12) | 0.0232 (10) | 0.0014 (10)  | -0.0016 (8) | -0.0011 (8)  |
| C3  | 0.0248 (12) | 0.0183 (12) | 0.0246 (10) | -0.0003 (10) | 0.0008 (8)  | -0.0002 (8)  |
| C4  | 0.0275 (12) | 0.0234 (12) | 0.0228 (10) | 0.0001 (10)  | 0.0001 (9)  | 0.0000 (9)   |
| C5  | 0.0220 (12) | 0.0227 (13) | 0.0286 (11) | -0.0012 (10) | -0.0045 (9) | -0.0003 (9)  |
| C6  | 0.0214 (12) | 0.0191 (12) | 0.0236 (10) | -0.0002 (9)  | -0.0016 (8) | -0.0018 (8)  |
| C7  | 0.0198 (11) | 0.0230 (12) | 0.0261 (11) | 0.0015 (10)  | -0.0030 (8) | -0.0012 (9)  |
| C8  | 0.0229 (12) | 0.0224 (12) | 0.0262 (10) | -0.0018 (10) | -0.0014 (9) | -0.0016 (9)  |
| C9  | 0.0277 (13) | 0.0249 (13) | 0.0362 (12) | -0.0018 (11) | 0.0035 (10) | -0.0045 (10) |
| C10 | 0.0342 (14) | 0.0283 (14) | 0.0403 (13) | -0.0020 (12) | 0.0134 (10) | -0.0021 (10) |
| C11 | 0.0347 (14) | 0.0253 (13) | 0.0293 (11) | -0.0053 (11) | 0.0079 (10) | -0.0030 (10) |
| C12 | 0.0272 (12) | 0.0237 (13) | 0.0273 (11) | -0.0023 (10) | 0.0032 (9)  | 0.0004 (9)   |
| C13 | 0.0194 (11) | 0.0232 (13) | 0.0253 (10) | -0.0035 (10) | 0.0016 (8)  | -0.0047 (9)  |
| C14 | 0.0305 (13) | 0.0264 (13) | 0.0266 (11) | 0.0005 (11)  | 0.0043 (9)  | 0.0008 (9)   |
| C15 | 0.0302 (13) | 0.0247 (13) | 0.0336 (11) | -0.0027 (11) | -0.0029 (9) | -0.0019 (10) |
| C16 | 0.0536 (17) | 0.0411 (17) | 0.0318 (12) | -0.0137 (14) | 0.0024 (11) | -0.0090 (11) |
| C17 | 0.0483 (17) | 0.0366 (16) | 0.0337 (12) | -0.0024 (13) | 0.0133 (11) | 0.0013 (11)  |
| C18 | 0.0280 (12) | 0.0224 (13) | 0.0207 (10) | 0.0004 (10)  | 0.0026 (8)  | -0.0021 (8)  |
| C19 | 0.0286 (13) | 0.0261 (14) | 0.0296 (11) | 0.0041 (11)  | -0.0028 (9) | 0.0000 (9)   |
| C20 | 0.0393 (15) | 0.0213 (13) | 0.0349 (12) | 0.0077 (11)  | 0.0005 (10) | -0.0017 (10) |
| C21 | 0.0364 (14) | 0.0240 (13) | 0.0283 (11) | -0.0024 (11) | 0.0042 (10) | -0.0028 (9)  |
| C22 | 0.0255 (12) | 0.0261 (13) | 0.0236 (10) | -0.0030 (10) | 0.0021 (8)  | -0.0004 (8)  |
| C23 | 0.0265 (12) | 0.0211 (12) | 0.0246 (10) | 0.0021 (10)  | 0.0018 (9)  | -0.0004 (9)  |

Geometric parameters (Å, °)

| O1—C1  | 1.378 (2) | C11—C17  | 1.531 (3) |
|--------|-----------|----------|-----------|
| O1—C13 | 1.381 (2) | C11—C16  | 1.538 (3) |
| O2—C9  | 1.230 (3) | C11—C12  | 1.540 (3) |
| O3—C5  | 1.230 (3) | C12—C13  | 1.492 (3) |
| O4—N1  | 1.227 (2) | C12—H12A | 0.9900    |
| O5—N1  | 1.231 (2) | C12—H12B | 0.9900    |
| N1—C22 | 1.472 (3) | C14—H14A | 0.9800    |
| C1—C6  | 1.340 (3) | C14—H14B | 0.9800    |
| C1—C2  | 1.488 (3) | C14—H14C | 0.9800    |
| C2—C3  | 1.533 (3) | C15—H15A | 0.9800    |
| C2—H2A | 0.9900    | C15—H15B | 0.9800    |
| C2—H2B | 0.9900    | C15—H15C | 0.9800    |
| C3—C14 | 1.531 (3) | C16—H16A | 0.9800    |
| C3—C4  | 1.532 (3) | C16—H16B | 0.9800    |
| C3—C15 | 1.533 (3) | C16—H16C | 0.9800    |
| C4—C5  | 1.507 (3) | C17—H17A | 0.9800    |
| C4—H4A | 0.9900    | С17—Н17В | 0.9800    |
| C4—H4B | 0.9900    | C17—H17C | 0.9800    |
| C5—C6  | 1.474 (3) | C18—C19  | 1.389 (3) |
| C6—C7  | 1.515 (3) | C18—C23  | 1.397 (3) |
| C7—C8  | 1.510 (3) | C19—C20  | 1.389 (3) |
| C7—C18 | 1.534 (3) | С19—Н19  | 0.9500    |
| С7—Н7  | 1.0000    | C20—C21  | 1.385 (3) |
|        |           |          |           |

| C8—C13     | 1.338 (3)   | C20—H20       | 0.9500      |
|------------|-------------|---------------|-------------|
| C8—C9      | 1.471 (3)   | C21—C22       | 1.388 (3)   |
| C9—C10     | 1.510 (3)   | C21—H21       | 0.9500      |
| C10—C11    | 1.528 (3)   | C22—C23       | 1.385 (3)   |
| C10—H10A   | 0.9900      | С23—Н23       | 0.9500      |
| C10—H10B   | 0.9900      |               |             |
| C1—O1—C13  | 117.83 (17) | C17—C11—C12   | 108.93 (19) |
| O4—N1—O5   | 124.0 (2)   | C16—C11—C12   | 110.6 (2)   |
| O4—N1—C22  | 117.83 (19) | C13—C12—C11   | 112.29 (18) |
| O5—N1—C22  | 118.1 (2)   | C13—C12—H12A  | 109.1       |
| C6—C1—O1   | 123.00 (18) | C11—C12—H12A  | 109.1       |
| C6—C1—C2   | 125.82 (18) | C13—C12—H12B  | 109.1       |
| O1—C1—C2   | 111.17 (17) | C11—C12—H12B  | 109.1       |
| C1—C2—C3   | 112.65 (18) | H12A—C12—H12B | 107.9       |
| C1—C2—H2A  | 109.1       | C8—C13—O1     | 122.81 (19) |
| C3—C2—H2A  | 109.1       | C8—C13—C12    | 126.15 (19) |
| C1—C2—H2B  | 109.1       | O1—C13—C12    | 111.04 (18) |
| C3—C2—H2B  | 109.1       | C3—C14—H14A   | 109.5       |
| H2A—C2—H2B | 107.8       | C3—C14—H14B   | 109.5       |
| C14—C3—C4  | 109.77 (17) | H14A—C14—H14B | 109.5       |
| C14—C3—C15 | 108.71 (18) | C3—C14—H14C   | 109.5       |
| C4—C3—C15  | 110.81 (18) | H14A—C14—H14C | 109.5       |
| C14—C3—C2  | 110.01 (17) | H14B—C14—H14C | 109.5       |
| C4—C3—C2   | 107.53 (18) | С3—С15—Н15А   | 109.5       |
| C15—C3—C2  | 109.99 (17) | C3—C15—H15B   | 109.5       |
| C5—C4—C3   | 113.96 (17) | H15A—C15—H15B | 109.5       |
| C5—C4—H4A  | 108.8       | C3—C15—H15C   | 109.5       |
| C3—C4—H4A  | 108.8       | H15A—C15—H15C | 109.5       |
| C5—C4—H4B  | 108.8       | H15B—C15—H15C | 109.5       |
| C3—C4—H4B  | 108.8       | C11—C16—H16A  | 109.5       |
| H4A—C4—H4B | 107.7       | C11—C16—H16B  | 109.5       |
| O3—C5—C6   | 120.21 (19) | H16A—C16—H16B | 109.5       |
| O3—C5—C4   | 122.31 (19) | C11—C16—H16C  | 109.5       |
| C6—C5—C4   | 117.45 (19) | H16A—C16—H16C | 109.5       |
| C1—C6—C5   | 118.54 (19) | H16B—C16—H16C | 109.5       |
| C1—C6—C7   | 123.00 (18) | C11—C17—H17A  | 109.5       |
| C5—C6—C7   | 118.46 (18) | С11—С17—Н17В  | 109.5       |
| C8—C7—C6   | 108.39 (18) | H17A—C17—H17B | 109.5       |
| C8—C7—C18  | 111.21 (16) | С11—С17—Н17С  | 109.5       |
| C6—C7—C18  | 112.29 (18) | Н17А—С17—Н17С | 109.5       |
| С8—С7—Н7   | 108.3       | H17B—C17—H17C | 109.5       |
| С6—С7—Н7   | 108.3       | C19—C18—C23   | 118.5 (2)   |
| С18—С7—Н7  | 108.3       | C19—C18—C7    | 121.75 (19) |
| C13—C8—C9  | 118.4 (2)   | C23—C18—C7    | 119.76 (19) |
| C13—C8—C7  | 123.21 (19) | C18—C19—C20   | 121.7 (2)   |
| C9—C8—C7   | 118.37 (19) | C18—C19—H19   | 119.2       |
| O2—C9—C8   | 120.0 (2)   | С20—С19—Н19   | 119.2       |
| O2—C9—C10  | 122.4 (2)   | C21—C20—C19   | 120.4 (2)   |
| C8—C9—C10  | 117.6 (2)   | С21—С20—Н20   | 119.8       |

| C9—C10—C11    | 113.83 (19)  | C19—C20—H20     | 119.8        |
|---------------|--------------|-----------------|--------------|
| C9—C10—H10A   | 108.8        | C20—C21—C22     | 117.3 (2)    |
| C11—C10—H10A  | 108.8        | C20—C21—H21     | 121.4        |
| C9—C10—H10B   | 108.8        | C22—C21—H21     | 121.4        |
| C11-C10-H10B  | 108.8        | C23—C22—C21     | 123.4 (2)    |
| H10A—C10—H10B | 107.7        | C23—C22—N1      | 118.3 (2)    |
| C10-C11-C17   | 109.7 (2)    | C21—C22—N1      | 118.3 (2)    |
| C10-C11-C16   | 110.3 (2)    | C22—C23—C18     | 118.7 (2)    |
| C17—C11—C16   | 109.38 (19)  | С22—С23—Н23     | 120.7        |
| C10—C11—C12   | 107.88 (18)  | С18—С23—Н23     | 120.7        |
| C13—O1—C1—C6  | 6.2 (3)      | C8—C9—C10—C11   | 32.6 (3)     |
| C13—O1—C1—C2  | -172.70 (17) | C9-C10-C11-C17  | -173.52 (19) |
| C6—C1—C2—C3   | 22.0 (3)     | C9-C10-C11-C16  | 65.9 (2)     |
| O1—C1—C2—C3   | -159.20 (17) | C9-C10-C11-C12  | -55.0 (3)    |
| C1—C2—C3—C14  | -167.45 (17) | C10-C11-C12-C13 | 46.8 (2)     |
| C1—C2—C3—C4   | -47.9 (2)    | C17—C11—C12—C13 | 165.81 (19)  |
| C1—C2—C3—C15  | 72.8 (2)     | C16-C11-C12-C13 | -73.9 (2)    |
| C14—C3—C4—C5  | 174.59 (18)  | C9—C8—C13—O1    | 172.13 (18)  |
| C15—C3—C4—C5  | -65.3 (2)    | C7—C8—C13—O1    | -7.0 (3)     |
| C2—C3—C4—C5   | 54.9 (2)     | C9—C8—C13—C12   | -7.8 (3)     |
| C3—C4—C5—O3   | 148.0 (2)    | C7—C8—C13—C12   | 173.1 (2)    |
| C3—C4—C5—C6   | -34.1 (3)    | C1—O1—C13—C8    | -4.3 (3)     |
| O1—C1—C6—C5   | -176.97 (18) | C1              | 175.67 (17)  |
| C2—C1—C6—C5   | 1.8 (3)      | C11—C12—C13—C8  | -17.4 (3)    |
| O1—C1—C6—C7   | 3.2 (3)      | C11-C12-C13-O1  | 162.64 (18)  |
| C2-C1-C6-C7   | -178.1 (2)   | C8—C7—C18—C19   | -112.2 (2)   |
| O3—C5—C6—C1   | -177.9 (2)   | C6—C7—C18—C19   | 126.2 (2)    |
| C4—C5—C6—C1   | 4.3 (3)      | C8—C7—C18—C23   | 66.7 (2)     |
| O3—C5—C6—C7   | 2.0 (3)      | C6—C7—C18—C23   | -54.9 (2)    |
| C4—C5—C6—C7   | -175.89 (18) | C23-C18-C19-C20 | 2.0 (3)      |
| C1—C6—C7—C8   | -12.4 (3)    | C7—C18—C19—C20  | -179.1 (2)   |
| C5—C6—C7—C8   | 167.72 (18)  | C18—C19—C20—C21 | -0.6 (3)     |
| C1—C6—C7—C18  | 110.8 (2)    | C19—C20—C21—C22 | -0.6 (3)     |
| C5—C6—C7—C18  | -69.0 (2)    | C20—C21—C22—C23 | 0.4 (3)      |
| C6—C7—C8—C13  | 14.3 (3)     | C20-C21-C22-N1  | -178.68 (18) |
| C18—C7—C8—C13 | -109.6 (2)   | O4—N1—C22—C23   | -13.9 (3)    |
| C6—C7—C8—C9   | -164.80 (18) | O5—N1—C22—C23   | 166.23 (19)  |
| C18—C7—C8—C9  | 71.3 (2)     | O4—N1—C22—C21   | 165.2 (2)    |
| C13—C8—C9—O2  | -176.5 (2)   | O5—N1—C22—C21   | -14.7 (3)    |
| С7—С8—С9—О2   | 2.6 (3)      | C21—C22—C23—C18 | 1.0 (3)      |
| C13—C8—C9—C10 | 0.2 (3)      | N1—C22—C23—C18  | -179.92 (17) |
| C7—C8—C9—C10  | 179.30 (19)  | C19—C18—C23—C22 | -2.2 (3)     |
| O2-C9-C10-C11 | -150.8 (2)   | C7—C18—C23—C22  | 178.92 (18)  |







Fig. 2